
2/18/25

1

4. Functions
ENEE 140

Prof. Tudor Dumitraș
Associate Professor, ECE
University of Maryland, College Park

http://ter.ps/enee140

1

Today’s Lecture

• Where we’ve been
– Variables and constants
– Variable assignment and operators
– ints, floats and chars
– Iterating (while, for) and branching (if)

• Where we’re going today
– Functions

• Where we’re going next
– Integer and floating point arithmetic

2

2

http://ter.ps/enee140

2/18/25

2

Review: Character Input/Output

• We’ve seen: reading input character-by-character

int c;
c = getchar(); Read next character
while (c != EOF) {

 … Do something with c
 c = getchar(); Read next character

}

• Can compare chars and add/subtract offsets
c = c + ; Convert uppercase c to lowercase

if (c >= && c <=) Check if c is uppercase

c = ‘D’ – ‘A’; c is

3

Why int?

3

Formatted Input and Output

• We’ve seen:
 int a = 0;
 printf(“The value of a is %d\n”, a);

• You can output data with printf and read data from the input with scanf

• printf format specifiers
– %d: int %ld: long
– %f: float, double %E: float, double in scientific notation, e.g. 1.5E3
– %c: character %%: the ‘%’ character
– See Table 7.1 in K&R for a complete specification

• Or type man 3 printf on the command line

• Read data from the input
 int a, b;
 scanf(“%d %d”, &a, &b);

4

4

2/18/25

3

Prompting the User for Input

• Print a message indicating the input expected
• Then read the input

 int sec;
 float gpa;

 printf(“Enter your section number: ”);
 scanf(“%d”, &sec);

 printf(“Enter your GPA: ”);
 scanf(“%f”, &gpa);

5

5

A Problem Solved by Programming

• Given a month and a year in the future,
print the calendar on a text terminal
– Example for September 2023

6

Su Mo Tu We Th Fr Sa
1 2

3 4 5 6 7 8 9
10 11 12 13 14 15 16
17 18 19 20 21 22 23
24 25 26 27 28 29 30

6

2/18/25

4

Modularity

• Functions allow you to break down your program’s functionality into
smaller pieces

• Programs that are made up of many small functions are called
modular
– In such programs it’s easy to modify one function, without affecting how the

rest of the program works
– Modular code is also easier to read

• Modular programs are the result of top-down problem solving
– Break down the problem you need to solve into smaller sub-problems
– For each sub-problem, write the prototype of a function that would solve it
– Write your program by invoking these functions, assuming that they are

implemented
– Then figure out how to implement each function

• Good programming practice: Writing modular code!

7

7

Functions: What We’ve Seen So Far

• Functions allow you to encapsulate computation
– You don’t care how a job is done; you know what is done

• Examples of functions we’ve seen so far
 printf(“The value of a is %d\n”, a); print an int variable
 c = getchar(); read a character

• You can use these functions in your programs without knowing
how they are implemented

• You can also define your own functions
– Example:

 int main() {
 …
 return 0;
 }

8

8

2/18/25

5

Defining Your Own Functions

• Function declaration (prototype)
int square(int param);

• Function definition (implementation)
int return type
square(int param) function name and parameter list
{
 int result; variable declarations
 result = param * param; statements
 return result; return specification
}

• Function invocation (calling the function in your program)
int a = 1+square(2)+square(3); use the function in an expression
 what is the value of a?

• You must declare or define a function before you invoke it
9

9

Function Parameters and Local Variables

• Function parameters (arguments)
– Parameters must have types (e.g. int, float) and are specified in the

function declaration and definition:
 int pow(int x, int y); the function takes 2 int parameters

– When you call a function, you must pass as many parameters as in the
prototype

 z = pow(2, 3); the types must match as well

– Modifying the arguments inside the function does not affect the original
variables (“call by value” in textbook)

– The function operates on a copy of the variable
 int a = 2;
 my_function(a); a is still 2, regardless of what happens in the function

• Variables local to the function
– You can declare variables inside the function, like you do in main()

• Parameters and local variables cannot be accessed outside the function

10

2/18/25

6

Return Values

• The type of the return value is specified in the prototype,
before the name of the function
int pow(int x, int y); the function returns an int

• It is also possible to write a function that does not return
anything
void return type is void
err_msg(int code) function with int parameter
{
 printf(“Encountered an error with code %d\n”, code);
} return statement is not needed

11

11

Putting It All Together

Quiz 3, Question 3
• Consider the following function definition

int
fun(int a, int b, int c)
{
printf("%d\n", a);
printf("%d\n", b);
return c;

}

• What is the last line printed by the following code snippet?
int ret = fun(1,2,3);
printf("%d\n", ret);

12

12

2/18/25

7

Modularity: Examples

• Example of top-down problem solving
– You are asked to write a program that prints a Celsius-Fahrenheit

conversion table
– Imagine that you have a function, which takes a float argument

representing the temperature in Fahrenheit degrees, and returns a float
with the corresponding Celsius value

– Write the loop that prints the conversion table
– Then look up the conversion formula and implement the function

• Helper functions
– In your assignments, you will often be asked to implement functions

that provide a certain functionality
– It is often a good idea to write additional helper functions that you use

in your program
– For example, such helper functions may provide functionality that is

useful for several tasks

13

13

Mathematical Functions Available in C

• These functions typically accept and return variables of type
double
#include <math.h> must include this header to use the math
 functions (more on this later)
sin(x); sine of x (in radians)
cos(x); cosine of x (in radians)
exp(x); ex

log(x); natural logarithm of x
log10(x); base 10 logarithm of x
sqrt(x); square root of x
…

14

14

2/18/25

8

Aside: Manual Pages

• You can get help on most functions from the C standard
library using the man command on the GRACE machines
man printf manual page of printf() function
man scanf manual page of scanf() function

15

15

Coding Style

• Programs are meant to be read by humans
– Code reviews are a common practice in the industry

• Good coding style makes programs more readable
– Examples of what not to do: http://www.ioccc.org/

• There is no “right” coding style
– Choose a style and be consistent

16

16

http://www.ioccc.org/

2/18/25

9

Coding Style: Examples

• Explain what the program does in a comment at the top
• Explain what each function does in comments before the function

definition
• Use concise, meaningful names for variables and constants

– If you have many variables, also add short comments describing the
purpose of some of the variables

• Follow normal English rules when possible for better readability of
your code
– Write complete sentences in your comments
– Leave a space after each comma and semicolon (e.g. in printf(), scanf(), for)
– Leave a space on each side of a binary operator (e.g. =, ==, +)

• Indent code consistently
– Clion tries to do this automatically

• If you have long, nested {…} blocks, add a comment after the
enclosing bracket
– Indicate which block you are closing (the while block, the if block, etc.)

17

17

Coding Style: More Examples

• Place braces {} in a consistent manner:
for (i = 0; i < 100; i++) {
 statements;
} OR
for (i = 0; i < 100; i++)
{
 statements;
 }
• When you prompt the user for input, first print out a message

describing what is expected
• Check for errors and corner-cases throughout the program

(more about this later)
• Use simple statements as much as possible

– Avoid statements like sum = a++ + --b*2
18

18

2/18/25

10

Review of Lecture

• What did we learn?

19

Next Steps

• Next lecture
– Integer and floating point arithmetic

• Assignments for this week
– Read K&R Chapters 2.5, 2.7, 2.8, 2.10, B2, B11

• Note: some of these chapters refer to strings (e.g. char s[]), which we’ll
cover later

• For now, think of s[i] as a character variable
• Read man pages for rand() and srand(); try to understand the

implementations on page 46
– Weekly challenge: read_divide_ints.c
– Homework: enee140_lab04.pdf, due on Friday at 11:59 pm
– No quiz next week

20

