
3/10/25

1

7. Arrays and Strings
ENEE 140

Prof. Tudor Dumitraș
Associate Professor, ECE
University of Maryland, College Park

http://ter.ps/enee140

1

Today’s Lecture

• Where we’ve been
– Scalar data types (int, long, float, double, char)
– Integer and floating point arithmetic
– Basic control flow (while and if)
– Functions

• Where we’re going today
– Vector data types: arrays, strings
– Defensive programming and assert()
– Testing
– Project 1 Q&A

• Where we’re going next
– Project 1: partial implementation due on Friday
– Midterm exam (after the Spring Break)
– Complex programs 2

2

http://ter.ps/enee140

3/10/25

2

Scalar vs. Vector Data Types

• We’ve seen
char, int, long, float, double
– These are scalar data types: a variable holds a single value

• Vector data types: hold a series of scalar variables of the same
type
– Declaration must specify the size N of the array

int a[10]; int array with N=10 elements
long b[10]; long array with N=10 elements
float c[10]; float array with N=10 elements
double d[10]; double array with N=10 elements
char e[10]; string with up to 9 characters (!)

– Accessing array elements: index between 0 and N-1
a[] = 0; first element
a[] = 0; last element 3

0
9

3

Strings

• Strings are character arrays, with some special rules
– You can initialize strings using string literals (use double quotes)

char s[] = "Hello world\n"; size of s[] is implicit

– The character ‘\0’ indicates the end of the string
char s[10]; must account for ‘\0’ => can only store 9 chars

– You can read and write strings using scanf and printf
• Use the %s format modifier

char s[] = "Hello world\n";
printf("The string is: %s", s);

4

0 1 2 3 4 5 6 7 8 9 10 11 12

H e l l o w o r l d \n \0S[]
index

4

3/10/25

3

Initialization vs. Assignment

• Arrays and strings can be initialized, but can not be assigned
char s1[] = “ENEE 140”; s1 is declared and initialized
char s2[10]; s2 is declared but not initialized
int a[3] = {1, 2, 3}, b[3]; a initialized, b uninitialized
s2 = “ENEE 140”; error! (cannot assign strings)
b = a; error! (cannot assign arrays)

• Instead, arrays and strings can be copied
– String copy

#include <string.h> needed for strncpy

strncpy(s2, “ENEE 140”, 10); must specify the size of s2[]

– Array copy
for (i=0; i < 3; i++) {
 b[i] = a[i]; copy a[] element-by-element
}

5

5

Reading Strings

• scanf: input string stops at whitespace or at the max field width
char s[10];
scanf("%9s", s); specify field width 9 to allow for ‘\0’ terminator
 note: s instead of &s

• fgets: read whole line up to specified size – 1
fgets(s, 10, stdin); stdin is the standard input stream
 (more on this later)
– The ‘\n’ character will be included in s[]
– fgets() returns NULL on EOF or error

• Read input line-by-line, until EOF is encountered
while (fgets(s, 10, stdin) != NULL) { … }

• Use a string as input source
sscanf(s, "%d", &i); read integer i from string s[]

6

6

3/10/25

4

Writing Strings

• printf: use %s format specifier
char str[] = “world”;
printf(“Hello %s\n", str);

• fputs: print only the string
fputs(str, stdout); stdout is the standard output stream

• Use a string as output:
sprintf(str, “%3d”, i); write integer i into str[]
– Important: Must be careful not to exceed the size of str[]!

7

7

Common Programming Mistakes

• Accessing or modifying elements outside the array bounds
– Incorrect

int a[10]; index can be

a[-1] = 0;
a[10] = 0;

char s[10]; can store up to

scanf("%s", s);

– Correct
a[i] = 0; where 0 <= i < 10
scanf("%9s", s); specify field width

• This is one of the most common security vulnerabilities in
software!! (more about this in ENEE 457)

8

3/10/25

5

Defensive Programming

• Good programming practice:
– Think about relationships among the variables in your program
– Determine conditions (e.g. a == b+1) that must be true at various steps, if

your program is correct
– Force the program to stop when these conditions are violated, then test the

program with a variety of inputs to make sure that this doesn’t happen
– This approach is called “defensive programming”

• Assert: a tool for defensive programming
#include <assert.h>
assert(condition); exits the program if condition is false

– Use assert() liberally
– Assertions allow you to diagnose mistakes in your program
– They also make your assumptions clear to other programmers who will read

your code 9

9

Defensive Programming – Example

• Use defensive programming to prevent common mistakes
related to arrays and strings
#include <assert.h>

int a[10];
assert(i>=0 && i<10); exits before accessing index out of bounds
a[i]=0;

• Turn off all assertions at compile time
gcc –NDEBUG myprogram.c

10

10

3/10/25

6

String Functions

• Convenient operations on strings
#include <string.h>

strlen(s); length of s
strncpy(dst, src, n); copy up to n characters from src to dst
strncat(dst, src, n); concatenate dst and src
strncmp(s1, s2, n); compare s1 and s2

• Common programming mistake
– Using strcpy, strcat, strcmp, etc.
– These functions do not allow you to specify the size of the destination

string
– Always use the strn* functions instead of the str* functions!

11

11

The sizeof Operator for Vector Data Types

• Yields the number of bytes required to store the array or string
– Array dimension x size of base type

char a[10];
int b[10];
sizeof(a) 10
sizeof(b) 40

• Important: string size vs. string length

char c[10] = "enee140";
sizeof(c) 10
strlen(c) 7

12

12

3/10/25

7

Function Parameters
• For scalar types (e.g. int, float), we’ve seen:

– Modifying the arguments inside the function does not affect the original variables
– The function operates on a copy of the variable

int b, a = 2;
my_function(a);
b = a + 1; a is still 2, regardless of what happens in the function

• Vector types (e.g. array, string):
– Modifying the elements of the array inside the function does change the original

variable
– The function operates on the original array

void
empty_string(char s[]) function with string parameter
{
 s[0] = ‘\0’;
}

char str[] = “Hello world”;
empty_string(str);
printf(“%s”, str); empty string “” is printed 13

13

Return Values

• The value returned from a function cannot be a vector type
– You cannot return int[] or char[]
– You must return a scalar type, e.g. int or char
– You can also write a function that does not return anything (using

void)

• Common programming practice
– To perform operations that produce a scalar data type, write a

function that returns the value you are trying to compute
– To manipulate a vector data type, write a function that takes as

parameter the string or array that will hold the result of the
operation

14

14

3/10/25

8

Testing

• Complex programs are more likely to have bugs

• It is important to test these programs thoroughly, with a broad
range of inputs
– Create several sets of input values (test cases)
– Think about corner cases

• Good programming practice: write test cases before writing the
program
– This helps you clarify what the program should do

• Debugging is not enough for writing correct programs
– You must also create rigorous tests

16

16

Review of Lecture

• What did we learn?

17

17

3/10/25

9

Next Steps

• Next time
– Midterm exam (after Spring Break)

• Midterm review recording on web page

• Next lecture
– Complex programs

• Assignments for this week
– Project 1: partial implementation due on 3/14
– No homework — study for the midterm

• Assignments for week after the midterm
– Homework: lab07.pdf, due on Friday at 11:59 pm
– Read K&R Chapters 4.3, 4.4, 4.5, 4.6, 4.8, 4.9, 4.11
– Weekly challenge: trim_strings.c
– Quiz 5, due on Sunday at 11:59 pm 18

18

