
4/7/25

1

9. Control Flow
ENEE 140

Prof. Tudor Dumitraș
Associate Professor, ECE
University of Maryland, College Park

http://ter.ps/enee140

1

Today’s Lecture

• Where we’ve been
– Scalar data types (int, long, float, double, char)
– Basic control flow (while and if)
– Functions
– Random number generation
– Arrays and strings
– Variable scope
– Header and source files

• Where we’re going today
– Other control flow statements
– Loop invariants

• Where we’re going next
– File I/O (unbuffered)

2

2

http://ter.ps/enee140

4/7/25

2

Review of printf

• We’ve seen
printf(“This is ENEE %d\n”, 140);
– Format specifiers: %d, %f, %s, …
– Special characters: \n, \t, …

• How to print escape characters with printf?
printf(“%%”); Prints %
printf(“\\”); Prints \
printf(“\””); Prints ”
printf(“\xHH”); Prints character with ASCII code HH
 (in hexa)

3

3

Review: if-else

• Evaluating a multi-way decision
– What’s the difference between these two constructs:

4

if (cond1) {

 statement1;

}
if (cond2) {

 statement2;

}
statement3;

if (cond1) {

 statement1;

} else if (cond2) {
 statement2;

} else {

 statement3;
}

• An else branch is associated with the closest if that lacks an else
– Common source of errors in C programs

• Good programming practice: use curly braces around if and else
branches
– Especially if you have nested ifs

4

4/7/25

3

Review of Loops

• Loops are used for repeating statements in a cycle, until a
condition becomes false

• We’ve seen
while (condition) { condition tested before the loop body
 statements
}

for (init; condition; increment) {
 statements

}

• for loop variations
for (;;) { … } infinite loop
for (a=0, i=0; … ; …) { … } multiple initializations, separated by ,

init;
while (condition) {

statements
increment;

}

equivalent to

5

Reading Files Line-by-Line
Needed for Project 2

• We’ve seen: getchar(), scanf()
• Reading a file line-by-line:

#include <stdio.h>
char line[MAX_LINE];
FILE *file_in, *file_out; variables representing the files

file_in = fopen("input_file.txt", "r"); open file for reading
file_out = fopen("output_file.txt", "w"); open file for writing

if (file_in == NULL) { fopen() failed
 printf ("Could not open the input_file.txt file.\n");
 exit (-1);
} also do this check for file_out

while (fgets(line, MAX_LINE, file_in) != NULL) { read a line from file_in
 fprintf (file_out, “%s”, line); write a line to file_out
}

fclose(file_in); fclose(file_out);

6

6

4/7/25

4

do-while Loops

• In C there is another kind of loop
do {
 statements
} while (condition) condition is tested after the loop body

• With a do-while loop, the body is always executed at least once
– With while and for loops, the condition is tested before each iteration =>

the body is not executed if the condition is false when entering the loop
– Convert this do-while loop to a for loop:

do {
printf(“%d\n”, i);
i++;

} while (i < 10);

7

7

Invariants

• Contracts that your code must not breach
– Loop invariant: expression that is true when you enter the loop and

remains true during each loop iteration
– Pre-condition: expression that is true before entering the loop
– Post-condition: expression that is true after exiting the loop

// From strncpy(), as implemented in class
for (i=0; i < dst_size-1 && src[i] != '\0'; i++) {
 dst[i] = src[i];
}

dst[i] = '\0';

Pre-conditions:

Loop invariants:

Post-conditions:

8

4/7/25

5

Invariants and Defensive Programming

• Asserting invariants
#include <assert.h>
assert(condition); exits the program if condition is false

– Use assert() liberally
– Assertions allow you to diagnose mistakes in your program
– They also reveal your program’s invariants to other programmers who

review your code

for (i=0; i < dst_size-1 && src[i] != '\0'; i++) {
 dst[i] = src[i];
 assert (dst[i] != `\0`);
}

assert (i < dst_size);
dst[i] = '\0’;

9

9

Early Loop Exit

• break and continue
– break causes the innermost loop or switch statement (described next) to

exit
– continue skips over the remaining statements in the loop body and starts

the next iteration
for (x=1; x<10; x++) {
 if (x == 5)
 break; // exit the loop
 …
}
…

• goto label
– Jumps to a label that can be placed anywhere in the code
– goto makes it difficult to reason about invariants => DO NOT USE!!
– The only accepted modern usage of goto is to break out of nested loops

10

10

4/7/25

6

continue

• How many times does this loop execute:
for (i=0; i<10; i++) {

if (i > 5)
continue;

i++;
}

11

11

break

• How many times does this loop execute:
for (i=0; i<10; i++) {
 if (i > 5)
 break;

 i++;
}

12

12

4/7/25

7

break and continue

• How many times does this loop execute:
for (i=0; i<10; i++) {
 if (i < 5)
 continue;

 if (i % 2)
 break;
}

13

13

The switch Statement

• We’ve seen

if (a == 1 || a == 2) {
 printf (“one-two”);
} else if (a==3) {
 printf (“three”);
} else {
 printf (“other”);
}

14

• The switch statement implements a
multi-way decision
switch (a) {
case 1:
case 2:
 printf (“one-two”);
 break;
case 3:
 printf (“three”);
 break;
default:
 printf (“other”);
}

• Note: switch tests whether an expression matches a set of
constant integer values

14

4/7/25

8

switch
• What does this print out:

int a = 4;
int b = 5;

switch (a) {
case 1:
case 2:
case 3:
 b++;
 break;
case 4:
case 5:
 b += 2;
case 6:
 b *= 2;
 break;
default:
 b--;
 break;
}

printf("%d\n", b);

15

15

Conditional Expressions

• We’ve seen
if (a > 10) {
 b = 1;
} else {
 b = 2;
}

• Conditional expression
b = (a > 10) ? 1 : 2;

16

16

4/7/25

9

Review of Logical and Relational Operators

• We’ve seen:
 == != < > <= >= relational operators

– Logical operators, for more complex conditions
 !cond1 cond1 is not true
 cond1 && cond2 both cond1 and cond2 are true
 cond1 || cond2 either cond1 or cond2 are true

• De Morgan’s laws
 !(cond1 && cond2) same as !cond1 || !cond2
 !(cond1 || cond2) same as !cond1 && !cond2

– More on this in ENEE 244

17

17

Review of Truth Values

• We’ve seen: truth values
– The results of relational operators can be assigned to variables

• The type of these variables is integer: 0 is false and 1 is true
• In a condition, any integer other than 0 will be accepted as true

 int a = (1==0); a is 0
 int b = !a; b is 1
– You can apply logical operators to these variables

18

a b !a !b a && b a || b

NOT a

0 0 1

0 1 1

1 0 0

1 1 0

NOT b

1

0

1

0

a AND b

0

0

0

1

a OR b

0

1

1

1

18

4/7/25

10

Review of Bitwise vs. Logical Operators

• Note: & is bitwise AND, while && is logical AND
(what’s the difference?)
 unsigned a, b;
 a = 1; in binary
 b = 2; in binary
 assert(a && b);
 assert(a & b);

19

true: both a and b are != 0

false: binary a & b == 0000 0000

0000 0001
0000 0010

19

Review of Operator Precedence
• Operator precedence (complete rules in K&R Table 2.1)

1. [] .
2. ! ~ ++ -- + - * (as in FILE *f) & (type) sizeof (unary operators)
3. * / %
4. + -
5. << >>
6. < <= > >=
7. == !=
8. &
9. ^
10. |
11. &&
12. ||
13. ?:
14. = += -= *= /= /% &= ^= |= <<= >>=

• Rule of thumb:
– Division and multiplication come before addition and subtraction
– Put parentheses around everything else

20

20

4/7/25

11

Review of Lecture

• What did we learn?

21

21

Next Steps

• Next lecture
– File input/output

• Assignments for this week
– Read K&R Chapters 6.8, 8.1, 8.2, 8.3, 8.4

• No quiz, no challenge
– Homework: lab09.pdf (on http://ter.ps/enee140), due on Friday at

11:59 pm

22

22

http://ter.ps/enee140

