
4/21/25

1

10. File Input / Output
ENEE 140

Prof. Tudor Dumitraș
Associate Professor, ECE
University of Maryland, College Park

http://ter.ps/enee140

1

Today’s Lecture

• Where we’ve been
– Scalar data types
– Arrays and strings
– Functions
– Random number generation
– Control flow
– Structuring complex programs

• Where we’re going today
– File Input/Output

• Where we’re going next
– Sorting

2

2

http://ter.ps/enee140

4/21/25

2

Text File I/O

• Declaring and manipulating file variables
#include <stdio.h>
FILE *file; declare the file variable

– Opening
file = fopen(“filename.txt”, “r”); open file for reading

• Mode “r”: open existing file for reading
• Mode “w”: open file for writing and erase existing content
• Mode “a”: open file for writing and append after existing content
• Opening a file in modes “a” or “w” will create the file if it doesn’t already exist
• The fopen() function returns NULL if there is an error

– Closing
fclose(file); close file

• Frequent mistake: Not closing all the files you have opened
3

mode

3

Text File I/O – continued

• Declaring and manipulating file variables
#include <stdio.h>
FILE *file; declare the file variable
int i;
char line[256];

– Reading
fscanf(file, “%d”, &i); like scanf()
i = getc(file); like getchar()
fgets(line, 256, file); read an entire line

– Writing
fprintf(file, “%d”, i); like printf()
putc(i, file); like putchar()
fputs(line, file); write an entire line

• The file must be open in order to read or write
4

4

4/21/25

3

Review: Reading a File Line-by-Line
#include <stdio.h>

char line[MAX_LINE];
int a, b;
FILE *file; variable representing the file

file = fopen("myfile.txt", "r"); open file for reading

if (file == NULL) { fopen() failed
 printf ("Could not open the myfile.txt file.\n");
 exit (-1);
}

...
fgets(line, MAX_LINE, file); read a line of text from the file
sscanf(line, "%d %d", &a, &b); parse line with sscanf()
...

fclose(file); close file

5

5

Position in the File

• When operating on a file, you read/write data sequentially

• You can change the current position in the file
rewind(file); go back to the beginning

fseek(file, 0, SEEK_END); go to the end of the file
– whence==SEEK_SET: move offset bytes after the beginning of the

file
– whence==SEEK_CUR: move offset bytes after the current position
– whence==SEEK_END: move offset bytes after the end of the file

(offset may be negative)

6

offset whence

6

4/21/25

4

Special Files

• stdin, stdout, stderr
fscanf(stdin, “%d”, &i); read from standard input
fprintf(stdout, “%d”, i); write to standard output
fprintf(stderr, “%d”, i); write to standard error stream

• You don’t have to open or close these special files

• By default, they are associated with the console
– You can redirect them from the command line

prog <infile.txt stdin redirected to infile.txt
prog >outfile.txt stdout redirected to outfile.txt
prog 2>errfile.txt stderr redirected to errfile.txt
prog1 | prog2 pipe stdout of prog1 into stdin of prog2

7

7

printf/scanf Operate on the Standard Output/Input

printf("Hello %s\n", "world"); is equivalent to
fprintf(stdout,"Hello %s\n", "world");

scanf("%d\n", &a); is equivalent to
fscanf(stdin, "%d\n", &a);

8

8

4/21/25

5

Review: Formatted Input

• You can read from stdin, from a file or from a string
FILE *file;
int read;
char string[256];
read = scanf(format, vars); read from standard input
read = fscanf(file, format, vars); read from file
read = sscanf(string, format, vars); read from string

• These functions allow you to read scalar data types (format
specifiers (%d, %u, %f, etc.) and strings (format specifier %s)
– Remember to put an & before each scalar variable you are reading, e.g.

scanf(“%d”, &a);

• The Xscanf() functions return the number of variables read
– Return is 0: the input did not match the format provided
– Return is EOF: the end-of-file was reached

9

9

Review: Formatted Output

• You can write to stdout, to a file, or to a string
FILE *file;
int read;
char s[MAX_S];
printf(format, vars); print to standard output
fprintf(file, format, vars); print to file
sprintf(s, format, vars); print to string

• format uses the same specifiers as the Xscanf functions
– Additionally, may specify the width and precision, e.g. “%4.2f”
– Width or precision may be specified as *: read it from next argument

printf(“%.*s”, MAX_S, s); print at most MAX_S chars from s
• For Xscanf, there is no modifier like * for Xprintf

– For all specifiers and modifiers, see Chapter 7.2 or type man printf

• With sprintf, you must be careful not to exceed the size of the string!

10

4/21/25

6

Pushing Back Characters

• We’ve seen: character I/O
c = getc(file); read a character from file
putc(c, file); write a character to file

• Can also push a character back to the input stream
ungetc(c, file); c will be returned by the next read operation

• The formatted I/O functions (fscanf, fprintf) are implemented
using the character I/O functions
– Ability to push back characters is needed when reading formatted

numbers
– You know that you have all the digits of the number when you read a non-

digit character
– But that character may be part of the next formatted input requested

(you’ve read one character too far) => push it back to the stream

11

11

Status of File Streams

• File operations interact with hardware devices
– These operations may fail
– You must be able to distinguish between these errors and reaching EOF

during normal file operations

• You can check the status of your FILE* stream
FILE *file;
if (ferror(file)) {…} check if an error occurred
if (feof(file)) {…} check if you reached EOF
rewind(file); rewind clears the EOF and error flags

12

12

4/21/25

7

Error Checking

• If you receive an error, you can print an error-specific message
#include <stdio.h>
FILE *file;
if ((file=fopen(“my_file.txt”,"r")) == NULL) {
 perror(“Cannot open file”); prints a message describing the error
 exit(-1);
}

• perror() appends an error-specific message to the text
provided and prints it to stderr
– You may also print additional error messages to stderr with

fprintf(stderr, …)

• Good programming practice: check the return values of all the
functions you invoke – an error may have occurred!

13

13

Error Checking: Examples

#include <stdio.h>

FILE *file;
unsigned options;

if ((file=fopen(“my_file.txt”,"r")) == NULL) {
 perror(“Cannot open file for reading”);
 exit(-1); cannot proceed: file is not opened
}

if (fscanf(file, "%u", &options) < 1) {
 fprintf(stderr, “File must start with an unsigned int”);
}

printf(“Read %u from the file\n”, options);

if (ferror(stdout)) {
 perror (“Error writing to stdout”);
}

14

14

4/21/25

8

Review of Lecture

• What did we learn?

15

15

Next Steps

• Next lecture
– Low-level file I/O

• Assignments for this week
– Try to understand how the shellsort implementation from K&R Chapter 3.5

works; read Chapter 5.11 for how to use the library function qsort()
– No quiz
– Weekly challenge: selection_sort.c
– Homework: lab11.pdf (on http://ter.ps/enee140), due on Friday at 11:59

pm

16

http://ter.ps/enee140

