
ENEE 140 Project 1: A Roll of the Dice

Posted: Tuesday, 4 March 2025
Due: This project has two deadlines:

• A partial implementation is due on Friday, 14 March 2025 at 11:59 PM

• A complete implementation is due on Monday, 31 March 2025 at 11:59 PM

Project objectives
1. Become familiar with the process of completing a programming project in C.
2. Declare and use of variables of basic types: unsigned, int, and float.
3. Perform arithmetic operations with these variables.
4. Understand type conversions, overflow and the range of numbers stored using integer variables.
5. Declare global variables.
6. Use if and if‐else statements for conditional processing.
7. Use loops (while or for) for iterative processing.
8. Implement and invoke functions.
9. Solve a programming problem by breaking it down into smaller problems.

10. Understand how pseudo-random numbers are generated in a computer system.

Project description
In this project, you will write two programs: enee140_gen_rnd.c and enee140_test_rnd.c.
The first program will generate pseudo-random numbers, with several ranges and distributions,
and the second program will test the randomness of the numbers you have generated. You will
have to implement several C functions in order to provide the functionality of the random number
generator (RNG). This program will print out a menu of options, prompt the user to choose an
option from the menu and then invoke the corresponding function.

A sequence of numbers generated by a deterministic computer program is not truly random, unlike
a sequence of coin tosses or repeated rolls of a pair of dice. Instead, the sequence appears to be
random, by providing properties (e.g. uniformity) that are adequate for a variety of applications
that require random numbers (e.g. simulation, cryptography, gaming). Such numbers are formally
called pseudo-random numbers; in this handout, we simply call them random numbers, to avoid
complicating the description.

1

Spring 2025
ECE Department, University of Maryland, College Park

ENEE 140 Dr. Tudor Dumitraș

The core of most random number generation programs is a function, such as rand() from the
C standard library, that generates integer numbers uniformly distributed between 0 and a value
RND_MAX. Other ranges and distributions can be obtained by transforming numbers generated in
this manner. The random number generators must be initialized by calling a function to provide
a seed—a number from which all the subsequent numbers are generated. For the random number
generator included in the C library, this is achieved by calling the srand() function. While the
function that generates the next random number may be invoked several times in a program,
the seeding function is generally invoked only once. Because the random number generators are
deterministic computer programs, two sequences generated using the same algorithm and starting
from the same seed will be identical (a common mistake is to seed the generator with a constant value
before generating each random number—this will result in generating the same number repeatedly).
However, the numbers must still be distributed uniformly in the requested range. This property
can be tested using a statistical uniformity test, which compares the observed frequencies of the
numbers generated with the ones that would be expected from a uniform distribution.

User interface
Write a complete program, called enee140_gen_rnd.c, that prints a menu, prompts the user for
several options, and then generates and prints a sequence of random numbers.

1 Main menu
Your first task is to print out the following menu on the screen:

Welcome to the ENEE140 pseudo‐random number generator!
1: Print RND_MAX
2: Generate uniformly‐distributed positive integers
3: Generate uniformly‐distributed positive integers, up to a given limit
4: Generate uniformly‐distributed integers, from a given range
5: Generate uniformly‐distributed floats, from a given range
6: Generate exponentially‐distributed floats

Then prompt the user for a choice by printing out:

Enter your choice (1‐6):

You may assume that the user will enter an integer. If the input is a valid number between 1 and 6,
you should proceed to the next step. Otherwise, you should print out the following error message
and ask user to re-enter a choice:

Sorry, that is not a valid option
Enter your choice (1‐6):

If the user fails to enter a valid choice 3 times in a row, you should print out the following on the
screen and terminate the program:

You have entered 3 invalid options. Goodbye!

2

Spring 2025
ECE Department, University of Maryland, College Park

ENEE 140 Dr. Tudor Dumitraș

2 Algorithm and seed
Your second task is to prompt the user for the algorithm to use when generating random numbers
and for the seed. First print out:

Select the algorithm to use.
Enter your choice (1‐3):

You may assume that the user will enter an integer. If the input is a valid number between 1 and
3, you can proceed to the next step. Otherwise, you should print out the following error message
and ask user to re-enter a choice:

Sorry, that is not a valid option
Enter your choice (1‐3):

If the user fails to enter a valid choice 3 times in a row, you should print out the following on the
screen and terminate the program:

You have entered 3 invalid options. Goodbye!

Hint: Note that the pattern for prompting the user is the same as in the previous step. To avoid
writing the same code twice, you could define a helper function that takes one integer parameter
(the maximum number of options) and that returns an integer (the user’s choice). To terminate
the program when the user repeatedly fails to provide a valid option, you may call the function
exit() from stdlib.h.

If the user has entered a valid algorithm number, print out:

Select the seed for the random number generator:

Read the integer provided by the user and seed the random number generator, by invoking the
function described in Step 5. Then proceed to the next step.

3 Additional parameters
Prompt the user for additional parameters needed by the selected option:

1. No additional parameters are needed. Print RND_MAX as described in Step 6, then prompt
the user for another choice from the main menu (you do not have to read the algorithm and
seed again).

2. Prompt the user for the length of the generated sequence:

How many numbers should I generate:

Read the integer number provided by the user, then generate random numbers by repeatedly
invoking the function described in Step 7 and print them as described in Step 4.

3. Prompt the user for the for the length of the sequence and for the maximum number to
generate:

How many numbers should I generate:
Enter the maximum number to generate:

3

Spring 2025
ECE Department, University of Maryland, College Park

ENEE 140 Dr. Tudor Dumitraș

Read two positive integer numbers provided by the user, then generate random numbers by
repeatedly invoking the function described in Step 8 and print them as described in Step 4.

4. Prompt the user for the length and range of the sequence:

How many numbers should I generate:
Enter the minimum number to generate:
Enter the maximum number to generate:

Read one positive integer and two signed integer numbers provided by the user, then generate
random numbers by repeatedly invoking the function described in Step 9 and print them as
described in Step 4.

5. Prompt the user for the length and range of the sequence:

How many numbers should I generate:
Enter the minimum number to generate:
Enter the maximum number to generate:

Read one positive integer and two floating point numbers provided by the user, then generate
random numbers by repeatedly invoking the function described in Step 10 and print them as
described in Step 4.

6. Prompt the user for the length and mean of the sequence:

How many numbers should I generate:
Enter the mean of the distribution:

Read one positive integer and one floating point number provided by the user. If the floating
point number is negative, print the error message below and prompt the user again:

Error: the mean must be a positive number.

After the user has provided a correct mean, generate random numbers by repeatedly invoking
the function described in Step 11 and print them as described in Step 4.

4 Print the generated sequence
Print each number number generated followed by a space. If the numbers generated are floats,
print only two digits after the decimal point. When you are done printing the sequence, print an
end-of-line character and exit the program. In other words, the last line of your program’s output
should be a sequence of random numbers separated by one space.

Random number generation
When random numbers are uniformly distributed in a given range, all the values in the range occur
with equal probabilities. For example, a coin toss can have two possible outcomes—heads or tails—
each with probability p = 1

2 ; rolling a die can produce any number from 1 to 6 with probability
p = 1

6 .

4

Spring 2025
ECE Department, University of Maryland, College Park

ENEE 140 Dr. Tudor Dumitraș

A popular method for generating uniformly-distributed random numbers on a computer is the
linear congruential (LC) method. The LC method is governed by three parameters:

• M = 2m, the modulus; 0 < M .

• A, the multiplier; 0 ≤ A < M .

• B, the increment; 0 ≤ B < M .

A, B, and m are positive numbers, which can be represented as unsigned variables in a C program.
This method generates a sequence of unsigned numbers X0, X1, …. X0 is initialized with the seed
provided by the user. Each invocation of the random number generator will produce a new number
Xi+1 by transforming the last number in the sequence Xi using the following formula:

Xi+1 = (AXi +B) mod M

For example, the sequence obtained when M = 10 and X0 = A = B = 7 is

7, 6, 9, 0, 7, 6, 9, 0 ...

Because the Xi sequence is computed modulo M , the numbers are generated in the range between
0 and M − 1. While it is possible to have a modulus that is not a power of 2, in this project we
will consider that M is always of the form 2m and we will specify m instead of M . If m = 32,
the numbers are generated in the whole range on unsigned numbers on the Elms machines. In
this case, the modulus operation can be omitted because arithmetic operations with unsigned
operands are performed modulo 232.

All LC generators enter a periodic orbit, i.e. a cycle of numbers that are repeated, as seen in the
example above. An RNG should have a period that is as long as possible; some applications require
millions of random numbers that do not repeat. The longest possible period is the modulus M , in
which case the orbit is a complete permutation: every number in the range is generated exactly
once.

In this project, you will implement three algorithms, defined by the following parameters:

Algorithm m A B

1 32 214013 2531011
2 32 1103515245 12345
3 31 1103515245 12345

These parameter choices ensure that all three algorithms have complete orbits.

To ensure that the state of the random number generator is preserved in between invocations, define
four global variables (variables defined outside of any function, including main()), as follows:

unsigned X; // Current value of RNG
unsigned m; // Modulus exponent: M = 2^m
unsigned A; // Multiplier
unsigned B; // Increment

5

Spring 2025
ECE Department, University of Maryland, College Park

ENEE 140 Dr. Tudor Dumitraș

You will manipulate these variables in the functions you will implement, as described below, to
provide the random number generation functionality.

5 Seed the random number generator
Implement a function with the following declaration:

void seed_rnd (unsigned seed, int algorithm);

This function should examine the value of the algorithm parameter and should initialize the m,
A, and B variables with the corresponding values from the table above. The function should then
seed the generator with the value of seed.

6 Print RND_MAX

Implement a function with the following declaration:

void get_rnd_max();

This function should print the RND_MAX that corresponds to the selected algorithm.

Hint: This value depends on the modulus used and is not necessarily the same as RAND_MAX from
the standard C library.

7 Generate uniformly-distributed integers
Implement a function with the following declaration:

unsigned gen_rnd();

This function should return an unsigned number, from a random sequence generated using the
LC method and the parameters that correspond to the selected algorithm.

8 Generate uniformly-distributed integers, up to a given limit
Implement a function with the following declaration:

unsigned gen_rnd_limit(unsigned limit);

This function should generate an unsigned number, by invoking the gen_rnd() function, and
should transform it so that the maximum number generated is limit instead of RND_MAX. You
may assume that limit ≤ RND_MAX.

Hint: Pay attention to the fact that RND_MAX + 1 may overflow, for some of the RNG algorithms
described above.

9 Generate uniformly-distributed integers, from a given range
Implement a function with the following prototype:

int gen_rnd_range(int min_gen, int max_gen);

6

Spring 2025
ECE Department, University of Maryland, College Park

ENEE 140 Dr. Tudor Dumitraș

This function should generate an int number, by invoking the gen_rnd() function, and should
transform it so that the minimum number generated is min_gen and maximum number generated
is max_gen. You may assume that max_gen - min_gen ≤ RND_MAX. If min_gen > max_gen, return
0.

10 Generate uniformly-distributed floats, from a given range
Implement a function with the following prototype:

float gen_rnd_float(float min_gen, float max_gen);

This function should return a float number, from a random sequence of numbers between min_gen
and max_gen. You can achieve this by invoking one of the functions described above and by
transforming the numbers generated into a sequence of floating-point numbers X so that min_gen
≤ X < max_gen. If min_gen > max_gen, return 0.

Hint: Think about the case when max_gen ‐ min_gen > RND_MAX.

11 Generate exponentially-distributed floats
Some applications require random numbers that follow other distributions than the uniform dis-
tribution. For example, if events occur continuously and independently at a constant average
rate µ (e.g. a radioactive substance that emits one alpha particle every µ seconds, or a com-
puter virus that infects a new host every µ milliseconds) then the time between two successive
events has the exponential distribution with mean µ. The exponential distribution produces pos-
itive numbers, and the probability that a generated number is less than or equal to a given x is:
Pr[X ≤ x] = 1− e−x/µ.

To generate exponentially-distributed numbers on a computer, you first need to generate a sequence
of random floats U0, U1, U2, ... that are uniformly distributed between 0 and 1. You can transform
this sequence into a sequence X0, X1, X2, ... of numbers that are exponentially distributed with mean
µ with the following formula:

Xi = −µ lnUi

Implement a function with the following prototype:

float gen_rnd_exp(float mean);

This function should return a float number, from a random sequence that follows the exponen-
tial distribution with mean given by the mean parameter. You can achieve this by invoking the
gen_rnd_float function and by transforming the numbers returned as described above.

Hint: You can compute the natural logarithm lnUi using the log() function from math.h.

Hint: When Ui returns 0, you cannot apply the natural logarithm. Instead, substitute any conve-
nient value ϵ for 0, as the probability of this case is small.

7

Spring 2025
ECE Department, University of Maryland, College Park

ENEE 140 Dr. Tudor Dumitraș

Testing the randomness of the numbers generated
Because the sequence of numbers produced by an LC generator only appears to be random, it is
important to test their randomness. One of the most popular randomness tests is the χ2 (read
chi-squared) test, which determines whether the occurrence frequencies of the numbers generated
are consistent with the uniform distribution.

To perform the χ2 test, split the range of the numbers generated into 10 bins and count how many
numbers produced by the RNG fall in each bin. Also compute how many numbers would be expected
to fall in each bin; if the bins have equal sizes and the random numbers are uniformly distributed,
the counts are expected to be the same for all bins. For each bin i, let oi and ei be the observed
and expected counts of numbers that fall in the bin. Then compute the following quantity:

D =

10∑
i=1

(oi − ei)
2

ei

If D ≤ 14.684, the sequence is consistent with the uniform distribution. If 14.684 < D ≤ 21.666,
the sequence looks suspicious. If D > 21.666, it is unlikely that the sequence comes from a uniform
distribution.

12 Test the randomness of the uniformly-distributed numbers generated
Write a complete program, called enee140_test_rnd.c, that tests the randomness of a sequence
of random numbers between 0 and 99, generated using the function described in Step 8. The
program should read inputs that look like this:

10
11 58 97 20 3 46 9 0 35 98

The enee140_test_rnd.c program should start by reading one integer, which indicates how many
numbers there are in the random sequence. The program should then read a sequence of random
integers. If fewer numbers are provided than specified (by the first integer on the first line), the
program should print the following error message (replace XXX with the number of integers expected
and YYY with the number of integers you were able to read) and exit:

XXX numbers are required, but only YYY were provided.

If any number provided is outside the range specified the program should print the following error
message (replace XXX with the incorrect number you read) and exit:

XXX is not in the [0, 99] range.

If there are no errors, perform the χ2 test as follows:

• Each number generated falls into one of 10 bins:

– Numbers between 0 and 9

– Numbers between 10 and 19

– Numbers between 20 and 29

8

Spring 2025
ECE Department, University of Maryland, College Park

ENEE 140 Dr. Tudor Dumitraș

– …

– Numbers between 90 and 99

• Count how many of the generated numbers fall in each bin (oi).

• If you are generating 1,000 uniformly-distributed numbers, 100 numbers are expected to fall
in each bin (ei = 100).

• Compute D as described above.

• Print one of the following messages, depending on the value of D:

The sequence is consistent with the uniform distribution (D = XXX).

or

The sequence is suspicious (D = XXX).

or

The sequence is unlikely to come from a uniform distribution (D = XXX).

Replace XXX with the computed value of D, using only two digits after the decimal point.

Hint: Perform the χ2 on sequences of at least 50 numbers.

Hint: You do not need to store all the numbers you read.

13 10 bonus points: χ2 test for the exponential distribution
The χ2 test can be used to test whether a sequence of numbers is consistent with any distribution,
not only the uniform distribution. Write a complete C program, called enee140_test_rnd_exp.c,
that performs the χ2 test on exponentially-distributed numbers, with mean 1, generated by the
function described in Step 11. You can perform the test as before, but you will have to choose
different bins (the numbers generated in this manner may be greater than 99) and you will also have
to determine the expected counts for each bin (the counts for different bins will likely be different,
as the numbers are not uniformly distributed in this case). It is also important to choose the bins
so that the expected count for each bin is at least 5.

This question is optional; this is an opportunity for you to earn bonus points.

Testing your programs
Complex programs are more likely to have bugs. It is therefore important to test your programs
thoroughly, using a broad range of inputs. A test case is a set of inputs for which you know the
output that your program must produce (you may determine the output manually, by following
the steps of the algorithm). A good programming practice is to write test cases before writing the
program.

You can also use enee140_test_rnd.c to test enee140_gen_rnd.c. First, compile the two
programs from the command line, as follows:

9

Spring 2025
ECE Department, University of Maryland, College Park

ENEE 140 Dr. Tudor Dumitraș

gcc ‐o enee140_gen_rnd ‐lm enee140_gen_rnd.c
gcc ‐o enee140_test_rnd ‐lm enee140_test_rnd.c

Then, generate uniformly distributed integers by invoking the first program as follows:

./enee140_gen_rnd | tail ‐n 1 >test_case.txt

The tail UNIX command prints the last line from the output of the first command, and > redirects
the output from tail into a file. Note that, if you invoke the program in this way, the menu will
not be printed (as the output from enee140_gen_rnd is redirected into tail), so you will have to
remember the parameters that you must input to generate the desired sequence.

Open the test_case.txt file produced in a text editor and add the length of the sequence on a
separate line before the random numbers generated. You can then invoke the second program as
follows to test the randomness of the sequence:

./enee140_test_rnd <test_case.txt

Hint: Don’t forget to test your programs with incorrect inputs, to see if they produce appropriate
error messages.

Project requirements
1. You must program in C and name your program files enee140_gen_rnd.c, enee140_test_rnd.c

(and, optionally, enee140_test_rnd_exp.c). Templates for these programs are included at
the end of this document (you do not have to use them, but they may provide some hints).

2. Your programs must compile on the GRACE UNIX machines using gcc enee140_gen_rnd.c
and gcc enee140_test_rnd.c.

3. Your programs must be readable to other programmers (e.g. Prof. Dumitraș, the TAs).

4. You must first submit a partial implementation by Friday, 14 March 2025 at 11:59 PM,
then a complete implementation by Monday, 31 March 2025 at 11:59 PM.

Partial implementation
Your partial implementation must correctly print the menu and prompt the users for parame-
ters, as described in Steps 1, 2, and 3. For each menu option, if you have already implemented
the random-number generation functionality print the values as described above; otherwise,
print a message saying “Functionality not yet implemented”. Log into Elms, click on Grade-
scope in the course menu, then go to Project 1 (partial) to submit your work.

Complete implementation
Your complete implementation must implement all the steps described above correctly. Create
a .zip archive containing the programs you wrote, then log into Elms, click on Gradescope in
the course menu, then go to Project 1 (complete) to submit your work.

10

Spring 2025
ECE Department, University of Maryland, College Park

ENEE 140 Dr. Tudor Dumitraș

Grading criteria
Correctness: 80%
Good coding style and comments: 20%
Late submission penalty: -40% for the first 24 hours

-100% for more than 24 hours
Program that does not compile on GRACE: -100%
Wrong file names (other than enee140_gen_rnd.c,
enee140_test_rnd.c, enee140_test_rnd_exp.c):

-100%

Bonus (χ2 test for exponential distribution): 10%

Program templates
You can start from the following templates (also available in the GRACE class public directory, at
public/projects/project1).

11

Spring 2025
ECE Department, University of Maryland, College Park

ENEE 140 Dr. Tudor Dumitraș

Template for enee140_gen_rnd.c

/*
* enee140_gen_rnd.c
*
* Generate random numbers, in different ranges and
* from various distributions.
*
*/

#include <limits.h>
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <assert.h>

/*
* Public API ‐‐ Function prototypes
*/

void seed_rnd (unsigned seed, int algorithm);

void get_rnd_max();

unsigned gen_rnd();

unsigned gen_rnd_limit(unsigned limit);

int gen_rnd_range(int min_gen, int max_gen);

float gen_rnd_float(float min_gen, float max_gen);

float gen_rnd_exp(float mean);

/*
* State variables of the RNG.
*/

unsigned X; // Current value of RNG
unsigned m; // Modulus exponent: M = 2^m
unsigned A; // Multiplier
unsigned B; // Increment

12

Spring 2025
ECE Department, University of Maryland, College Park

ENEE 140 Dr. Tudor Dumitraș

/*
* Main function
*/

int
main()
{

return 0;
}

13

Spring 2025
ECE Department, University of Maryland, College Park

ENEE 140 Dr. Tudor Dumitraș

Template for enee140_test_rnd.c

/*
* enee140_test_rnd.c
*
* Test 1000 randomly generated numbers for uniformity,
* using a chi‐squared test with 10 bins.
*/

#include <stdio.h>

/*
* Main function
*/

int
main()
{

return 0;
}

14

	Main menu
	Algorithm and seed
	Additional parameters
	Print the generated sequence
	Seed the random number generator
	Print RND_MAX
	Generate uniformly-distributed integers
	Generate uniformly-distributed integers, up to a given limit
	Generate uniformly-distributed integers, from a given range
	Generate uniformly-distributed floats, from a given range
	Generate exponentially-distributed floats
	Test the randomness of the uniformly-distributed numbers generated
	10 bonus points: 2 test for the exponential distribution

